字體:    護眼關燈

我在番茄備考爆款熱文 第422章 (第1頁)

進而,我們根據曾經學過的有關數學思維,可以聯想,就是現在的減去過去的,再除以間隔的年份。

比如,2020年工資100,2025年工資500,問年均增長量?

年均增長量=(現期-基期)間隔年份這道例題當中,間隔年份5,求的年均增長量40,還是很簡單的。

那么,這里,只需要關注一個點,就是間隔年份到底是幾年?

這個應該怎么去界定。

比如,2019年工資100,2020年工資120,2021年工資140,2022年工資160,2023年工資180,2024年工資200,2025年工資220。

問2020到2025的年均增長量。

那么此時,究竟要算不算19年呢?

對于2020到2025間肯定是不需要去算19的,他將這個界定給限制死了,但是會有極少數的情況,就是算得,但是對于大部分來說是不包含的。

看完了年均增長量,再來看年均增長率。

李強對于年均增長率的想法并沒有錯誤,但是在實際操作過程當中有一定的計算難度。

年均增長率,通俗點就是平均每年的增長率,那么知道以后,同樣可以用上一節的方法進行類比推導,此時(1+年均增長率)n次方=現期基期在這個公式當中,不難發現,出現了指數函數n次方,這個n指代的就是具體的年數。

同樣的,用上述舉例。

2020年工資100,2025年工資500,問年均增長率?

此時,(1+年均增長率)5次方=500100自然而然的就能求出對應的年均增長率。

李強看著眼前得出的算式,又是一陣頭大,這要開5次方,這咋算啊,五次方計算器也很難開出來,但是,我們不要著急,現在就來解決這個問題。

我們根據目前的公式就可以知道,它都是(1+年均增長率的

『點此報錯』『加入書架』